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Abstract-Heat transfer associated with a spherical particle under simultaneous free and forced convection 
is numerically investigated using a combined Chebyshev Legendre spectral method. Both internal and 
external thermal resistances are taken into consideration by means of a conjugate model consisting of the 
full Navier -Stokes equations for external Row and the energy equations for both inside and outside the 
sphere. An influence matrix technique is employed to resolve the dilhculties created by the tack of vorticity 
boundary conditions and to decouple the energy equations from interfacial couplings. Simulation results 
reveal that effects due to natural convection are most remarkable in the wake where the flow structure is 
changed. The overall Nusselt number and the drag coefficient show an increase or decrease in magnitude 
depending on whether gravity-induced Bow aids or opposes the main flow. However, the change does not 
exceed 17% for the cases Gr/Re’ < 40. When the buoyancy and the free stream are in the same direction, 

the effects are less pronounced than when they are in the opposite direction. 

1. INTRODUCTION 

LITERATURE concerning heat transfer associated with 

a spherical particle is numerous (see Clift et nl. [I]). 
Two particular areas which received a great deal of 

theoretical and experimental investigations have been 
forced and free convection. In the former, the con- 
vective mode of heat transfer is primarily controlled 
by an external forcing mechanism which causes a reia- 
tive motion between the particle and its surroundings. 
Detailed analysis of this situation can be found in 
Dennis et rtl. [2] and Paik et al. [Ii]. In free convection, 
the motion in the participating medium is driven by 
the buoyancy force as a consequence of density vari- 

ation which, in turn, is induced by thermal non- 
equilibrium. Representative works in this area include 
Riley [4], Fujii er al. [5, 61, Ingham [i’], and Geoola 
and Cornish [8]. Both scenarios just described are 

actually the limiting cases under which one type of 
convection is predominant over the other. In many 
cases, however, both forced and free convection are 
of the same order of magnitude ; therefore, both must 
be accounted for in the model. 

Modeling a mixed convective heat transfer problem 

can be tedious because of the strong couplings 
between the energy and momentum equations. Three 
classes of solutions have appeared in the literature. 
They are the perturbation solution, boundary layer 
solution, and direct numerical solution. In the per- 
turbation approach [9J, the governing equations are 
linearized according to the matched asymptotic 
expansions of the perturbation theory so that ana- 
lytical solutions to the first few order terms are poss- 
ible. Even with the first few order terms, most of the 
physics of the problem are contained in the solution as 

long as the perturbed quantities, the Reynolds (Re) 
and the Grashof (Gr) numbers in this case, are small. 
In the boundary layer approach. the energy and 

mom~ntun~ equations are simplified using the boun- 

dary layer approximation and are converted to a sys- 
tem of ordinary equations through the similarity 
transformation [IO, I I]. As usual, the solution here 
is valid if and only if there exists thin thermal and 
hydrodynamic boundary layers along the sphere sur- 
face which is the case when Fe (Peclet) and Re are 
large. Granted that this condition holds, the solution 
still fails to give the correct picture of the transport 

process beyond the point of separation. Besides those 
shortcomings, the aforementioned methodologies 
cover only a limited range of conditions that one often 
encounters in practice. It is clear that a more general 
approach is needed and undoubtedly computer model- 

ing is the answer. One of the early attempts in solving 
this problem was due to Wong et cd. [ 121 who numeri- 
cally solved the problem by the finite element method. 
Several important features were revealed from their 

study. In particular, the surface pressure decreases 
significantly near the rear stagnation point and 

increases, to a lesser extent, near the front stagnation 
point as Gr increases. S~~bs~dntial increase is also 
found in the local shear stress as well as the heat 
transfer rate. These effects are primarily due to the 
buoyancy force that accelerates the flow near the 
sphere surface. Despite the fact that the problem is 
relatively well understood, all the above investigations 
neglected the transient effects and assumed a neg- 
ligible transfer resistance within the sphere. According 
to a study of Oliver and Chung 1131. neglecting the 
internal transport resistance would result in ovcr- 
prediction of the Nusselt number unless the volu- 
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NOMENCLATURE 

expansion coefhcient for vorticity 

expansion coefficient for stream function 
expansion coefficients for exterior and 

interior temperatures, respectively 
drag coefficient 
heat capacity 

unit vector associated with spherical 
coordinates 
g~~vitatit~nai constant 

&,‘i, 6::; Chebyshcv matrix for first and 
second dcrivative3 respectively 

Gr Grashof number 

i-l,,!% see equation (25) 
I see equation ( 17) 
Nu Nusselt number 
NI_ number of terms retained in the Legendrc 

expansion 
MT+ I nnmber of collocation points 

p,, Lcgendrc polynomial of order II 
P,:. P,f. associated Lcgendre function of 

the first kind. second kind, cm.. and of 
order IZ 

Peclct number 
radial coordinate 
sphere radius 

Reynolds number 
see equation (24) 
dimensional time 
Chebyshev polynomial of order i 

local velocity vector 
free stream velocity 

cos 0 
dimensionless temperature. 

Greek symbols 

;I 

thermal diffusivity 
isothermal expansion coefficient 

; product of 3-J coefbcients. see equation 

(29) 

Kroneckcr delta 

time increment 
tolerance vector 
dimensionless vorticity 
coordiilate tr~~nsfort~~ation, see equation 

(17) 
angular coordinate measured in radians 

product of 3-5 coefficients, see equation 

(28) 
dynamic viscosity 
kinematic viscosity 

coordinate transformation. see equation 

(17) 
-0. z , z auxiliary functions, see equation (XI) 
n fluid pressure 

P density 

I;, 
dimensionless time 
ratio of the transport coefficient of the 
inside to outside 

X product of 3-J coefhcicnts, see equation 

(27) 
$ dimension&s stream function 
0, product of 3-J coefficient. see equation 

(3). 

Superscript 

M iteration level. 

Subscripts 
b pertains to volume-averaged quantity 
conj conjugate problem 
ext external problem 
int internal problem 
m pertains to mean quantity 

S pertains to sphere surfdcc 

% pertains to free stream c~?ndition 

0 pertains to initial condition. 

metric heat capacity ratio of the sphere to the external 

fluid is large (($,/QC,,) >> I). As the system departs 
from this condition, the surface temperature fails to 
remain constant and more importantly it is not known 
a priori; hcncc, the probletn must be formulated in 
a conjugate manner. In this Fashion, the governing 
equations of both continuous and dispersed phases, 
the appropriate asymptotic conditions at the far field 
and at the sphere center. and the continuity of tem- 
perature and of heat flux at the surface would form a 
well-posed formalism of the heat transfer problem 
associated with a spherical particle. 

The purpose of this article is three-fold. First, a 
rigorous mathematical treatment is used to describe 

the heat transfer process for systems in the intcr- 
mediate range of volumetric heat capacity ratio. 
Second, transient effects are included so that temporal 
evolution of the flow and temperature fields can bc 
predicted. Third, a spectral numerical schcmc is 
devised to deal with the conjugate problems. Physi- 
cally. the present paper differs from the work 01 
Wong el al. 1121 in two aspects that internal thermal 
resistance and transient effects are also incorporated. 
With regard to the last objective, it is our continuing 
effort to develop a combined Ga~crkin-collocation 
spectral numerical method. which has successfully 
been applied to the flow equation [14], for coupled 
viscous flow and heat transfer problems. 
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2. MATHEMATICAL FORMULATION 

2.1. Problem statement 
Consider a solid particle, assumed to be spherical 

in shape, of radius R suspended in an unbounded 
convective environment with a uniform velocity U, 
as sketched in Fig. 1. Initially, the particle is at tem- 
perature Z0 and is hotter than the host medium which 
is maintained at temperature Z,. Due to the thermal 
potential difference, heat flows from the particle to 
the surrounding fluid as dictated by the second law of 
thermodynamics. As a result of the absorption of 
energy, fluid particles in the proximity of the hot 
sphere become warmer causing a density variation 
which, in turn. creates a motion in the direction 
opposite to the gravity and is driven by the gravi- 
tational interaction. This gravity-induced flow when 

superimposed on the pre-existing motion would 
modify the flow field, hence the temperature field, 
especially in the wake region. Depending on the direc- 
tion of the sphere motion and the buoyancy, this 
forcing mechanism could aid or oppose the main flow 
and could produce dominant effects. 

In view of the complexities in the present in- 
vestigation. we shall formulate the problem with 

the following assumptions : (i) the fluid is Newtonian 
with constant properties except density which varies 

as a direct consequence of change in temperature, 
(ii) the transport processes are axisymmetric and with- 
out radiative interactions, (iii) the Boussinesq 

approximation is valid, and (iv) the line of action of 
gravity is parallel to the free stream velocity. 

2.2. Governing equations 
Under the scenario outlined above, the heat transfer 

process is governed by the conservation of mass. 
momentum, and energy. These laws give rise to the 
following equations whose dimensionless form may 
be cast in spherical coordinates as 

ai 1 a($,[/rsinQ) 2 1 

& r 
~ ~ -- = Fe rsino E’([r sin 0) 

i;(r, 0) 

+$ L az coso dZ 
sinOar+I~aB 1 , (1) 

E211, = -jrsinO, (2) 

FIG. I. Coordinate system. 

i3Z az u,, az 
yj;+QY+rgj 

=ai:~(rI~)+~~(sine~)l, (3) 

aZ la -l- 
- = 7 -q- 
?f r- cr ( > 

1 d aZ 
rz’z +--_- sinQ_ 

Sr r’slnO 20 ( > a0 ’ (4) 

where we have used the standard notation 
ci( , )/a( , ) to represent the Jacobian and a tilde to 
denote the sphere interior. The operator E2 employed 

in equations (1) and (2) has been defined as 

E2 = ;r22 I sin* a ’ O7 
( > r’ 8 sinH 80 (5) 

The stream function introduced above satisfies the 
continuity equation. Thus, it follows that 

e, &Ii eH 81) 
u- 1 

r-sin0 at7 rsin0 i7r’ (6) 

In equations (1) to (5) we have nondimensionalized 

the variables as follows : 

yt = Y tux t3i 

R’ 
7==--, - 

R 
T=R’ 

1 

“, P 

p,_?!!?R, Gr = 
WVZo-Z,)R3 

c! --z- 
V 

(7) 

where an asterisk has been used to indicate dimen- 

sionless quantities and has been dropped in the above 
equations. Note that the two time scales are related 
by 7 = (Pe/@J. 

The boundary conditions which accompany equa- 
tions (l)-(3) include the following : 

I. Axisymmetry : At the axis of symmetry, it is 

required that 

ti(r, r, 0) = $(r, r, 7[) = ((7, r, 0) = i(r, r, 7[) = 0, (8) 

Z(7, r, 0) = Z(7, r, n) = Z(f, r, 0) = _Z(f, r, n) = 0. (9) 

II. Far-field : The stream function and temperature 
of the continuous phase approach the free-stream 
values asymptotically, i.e. 

lim fj(t, r, 0) + r s 
S’ 

P, (4 dz, r-x co9 0 

lim Z(r, r, 0) -+ 0, 
I-x 

(10) 

(11) 

where r, is the radial distance beyond which the free- 
stream condition prevails. 

III. Solid-fluid interface : The necessary require- 
ments at the sphere surface include the zero normal 
and tangential velocity components. In addition. con- 



4446 H. D. NGUYEN H al. 

tinuity of temperature and heat flux, provided no 
interfacial resistance exists, are also enforced. These 
lead to the following constraints : 

where Q’s are the property ratios of the sphere to the 
outside fluid. 

IV. Sphere center: Temperature must be bounded, 

fLm Z(t‘. r. 0) = finite. (14) 

To complete the problem specification, the initial 

conditions are taken such that 

tb(O, r,(I) = 0. i(O.r.0) = 0. (15) 

Z(0. r, 0) = 0. Z(0.r. 0) = I. (16) 

In what follows, a hybrid numerical method that 
combines various approaches of weighted residual 
principles is described for simulating the afore- 
mentioned system of equations. 

3. METHOD OF SOLUTION 

For ease of numerical calculations, the domain of 
the continuous phase is first truncated to I,, then the 

resulting domain together with that of the dispersed 
phase are mapped onto [ - I. I]. Such projection is 
accomplished by means of the following coordinate 

transformations : 

;(I +<). YElO, I] 
:=cosII, I’= e’ z, I “I, . re[l.r,] 

(17) 

where I is a parameter that controls the domain trunca- 
tion. The deployment of the exponential mapping 
allows the grid points to be clustered near the sphere 
surface where thin boundary layers are expected to 
exist. Others. algebraic and tangent function map- 
pings for example, have also been used for boundary 
layer type of problems : however, the exponential map 
seems to be a popular choice especially for the prob- 

Icm under consideration. 
Following earlier work on spectral methods [3, 141, 

the dependent variables are represented as series of 

products of Legendre, P,,(z), and Chebyshev, T,(q), 
polynomials. That is, 

the corresponding dependent variable being expan- 
ded. As seen from equation (19), we have cxpan- 
ded rZ instead of 2 alone for the sole purpose of avoid- 
ing the complications introduced by the temperature 
boundary conditions at the center of the particle. 

Upon substitution of equations (I 8) and ( 19) into 

equations (l))(4). then making use of the orthogon- 
ality properties and recursive formulas of Lcgendrc 
functions. the equations become free of angular 
dependence. Following the weighted residual prin- 
ciples, the resulting equations arc further simplified 
by forcing them to be error free at the Gauss-Lobatto 

points, herein referred to as collocation points, to 
yield a system of nonlinear equations written in 

(20) 

(21) 

where we have used a first-order backward Euler 
difference to approximate the time derivatives. In the 
above equations (20)-(23) e:“, is the (NT+ I) 
x (NT+ 1) Chebyshev matrix representing the 

ith derivative [l5]. Unless otherwise specified, the 
asterisk denotes the previous time level and those 

without it pertain to the current level. 
The convective terms in equations (20) and (22) 

may be expressed as 
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tern of two equations in two unknowns written in 
matrix notation as 

x (; ; ~I)(~ ; :), (2% 

where 

has been termed the 3-JeoefIicient in themathematica1 
Iiterature. Procedures to numerically compute these 
integrals were discussed by Rottenberg et at. [i6] and 
interested readers are referred to their monograph. 

One of the difficulties arising in solving equations 
(20)-(23) is due to the absence of the vorticity bound- 
ary conditions. However, the decomposition concept 
has proven effective as Nguyen and Chung 1141 
applied it to flow past an impulsively started sphere. 
Since the solution technique to the Navier-Stokes 
equations has been discussed at length, and fur- 
thermore the fiow is now decoupled with heat transfer, 
only methods used in the energy equations are 
described in detail. 

To begin the discussion, the solution of each com- 
ponent of temperature at any iteration cycle, say n 
and m respectively, is sought as a linear combination 
of the solutions of the supplementary problems, i.e. 

where rJj and &2 are the unknown coeficients to be 
determined from the interfacial boundary conditions : 
temperature and heat flux continuities. In the trans- 
formed coordinates, expressions ( 13) form a linear sys- 

in which the prime represents derivative operator. 
Among several existing direct and indirect methods 

to treat the boundary value problems, iterative algor- 
ithms seem to offer many advantages with respect to 
the computing time and the memory storage, Hence, 
we shall adopt the following procedure, based on the 
ideas of successive substitution which is selected for 
simplicity, which consists of four steps in advancing 
from one time level to the next. 

A. Solve for 3s and z’s according to the following 
auxiliary problems : 

with 

&, = 0 and Z$ = 6,; J 

i=o, I, (32) 

with 

= +,=O and & =6ti J 03) 

B. Solve equation (31) for the decomposing 
coefficients 4, and Qr. 

C. Compute new estimates using equation (30) and 
check for convergence on the basis of the following 
criteria : 

/Xm+r -X”I < {sj, 04) 

where X = (L,,, . . . , inNr, IL,,o,. . . . jl,,NTr Z,,. . . . , 
z 2 ,LVTI nor.. . , i?,,,v,)T and (E) is a prescribed tolerance 
vector. in case such conditions are not satisfied, the 
flow field and the convective terms are then updated 
and steps A, B, and C are repeated. 

It is appropriate to add a remark that step A 
involves equations with the left-hand sides unchanged 
with time. Hence, the matrices may be factored into 
upper and iower matrices once and for ail. As a pre- 
liminary assessment of the above algorithm, con- 
vergence history indicates that the desired tolerance 
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(default value is 0.001) is reached within one or two 
iterations except for the first few time levels. 

4. PHYSICAL QUANTITIES 

Besides the detailed histories of the evolution of 
thermal process, a number of quantities are of import- 
ance in this article. Of particular interest are the drag 
coefficient for fluid flow and the heat transfer rate for 

energy transport. Also of relevance in this study are 
the interfacial quantities which are subjected to sig- 
nificant effects augmented by natural convection. 
Because these lend themselves to a better under- 

standing of combined convection heat transfer, a deri- 
vation is given below. 

Two main contributions to the total drag force are 
the form and the viscous drags. When normalized 
with the inertial force (rr~tY’R*), there results the 
drag coefficient [ 141, 

c,, = -2 II],= ~,rdr 

-8 
= 3Rc 

By defining the particle temperature as the volume- 
averaged temperature. one deduces the equation 

Z,(f) = ; 
I I 

si 
z(f, t,;)r*drd~ (36) 

0 -1 

I 
= ;;&=,,,, 1 (1+5)T,(C)d5. 

.I 1 

The local surface temperature can be computed 
from the equation. 

V,. 
Z,(KfI) = c Tn”P,,(Z), (37) 

!, = 0 

and its average can easily be verified to be 
Z,(f) = Z”,(f). 

The instantaneous local Nusselt number gives a 
direct measure of heat transfer rate and is computed 

from the definition : 

The overall Nusselt number can be obtained by inte- 
grating equation (38) over the entire surface area of 
the sphere. Upon performing the integration with the 
aid of the orthogonality property of the Legendre 
function, the mean Nusseh number becomes 

-4 .” 
N&,(T) = ;+ 1 &?, z,,, (7). (39) 

In subsequent discussion. the heat transfer process 

will be examined in greater detail. and the quantities 
derived in this section will be used to assist in inter- 
preting the simulation results. 

5. RESULTS AND DISCUSSION 

To illustrate the salient features of the present 

approach, this section is divided into two parts. In the 
first part we shall study the evolution of the tem- 
perature and the flow &Ids of a system in which a 

sand (cork ground) particle travels in air. The thermo- 
physical properties of this system are taken at an 
effective temperature (100 F) so that Pr = 0.7. 
@‘, = 1.333, and O’, = 5 x 10 ‘. In the second part. WC 
shall examine the local behavior of interfacial quan- 

tities such as the Nusselt number, the surface vorticity, 
the surface pressure, and the surface tempcraturc 
while Gr varies. Along the same line we shall pursue 
a parametric study to examine the time histories 01 
Nusselt number and drag coefficient for a wide range 
of Rr and Gr. Throughout the study, values of NL 

and NT are set to be 15 and 120 respectively with a 
time increment of 0.001. The truncation radius r, is 
fixed at 30 to ensure proper convergence. 

Figures 2(a))(c) and 3(a)-(c) are respectively the 
temporal developments of the velocity and tem- 
perature fields for Re = 80 at 7 = 0.2, 2. and 10. As 
for the flow field, it started with a pattern rcscmbling 

the potential flow (Fig. 2(a)) because the viscous 
actions are limited to a very thin hydrodynamic 
boundary layer at the surface. As time proceeds, this 
layer grows in thickness and a wake is formed behind 
the sphere, as clearly demonstrated in Figs. 2(a) and 
(b), which is a precursor to the dcvelopmcnt of an 
eddy. Once triggered. the eddy volume expands con- 
tinuously with time. At T = IO, the eddy length is 
already longer than the sphere diameter as shown in 

Fig. 2(c). With regard to the temperature distribution. 
spherical symmetry is seen in Fig. 3(a) indicating a 
conduction dominance in the early stage of the heat 
transfer process. Such an attribute may or may not 
last long depending on the convection intensity 
because once convection overwhelms diffusion. the 
structure of the temperature held is modified in a 

manner such that the isotherms elongate in the 
stream-wise direction (see Figs. 3(b) and (c)). The 
main action of the convective mechanism is to carry 
the warm fluid away from the hot surface and leave 

behind fresh fluid, thereby, maintaining the highest 
thermal potential gradient possible for heat flow. 

The results presented thus far do not reflect the 
effects due to gravity-induced flow,. Because such 
effects are likely confined to a zone near the particle. 
it is wise to consider various interfacial quantities. 
Figures 4(a) and (b) are the respective surface pressure 
and vorticity at three different values of Grashofnum- 
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(D, = 1.333). 

bers : - 105, 0, and 10” where the negative sign indi- 

cates the buoyancy-induced flow and the free stream 
are in the same direction. In general, free convection 25 

I 015 

is most influential in the wake region where significant 

effects are observed, as confirmed in Figs. 4(a) and 
(b), and are weakened when moving toward the front 
stagnation point. Also obvious from these figures are 

that the surface pressure and vorticity are dependent 
upon the direction of the buoyancy ; they experience 
an increase if the buoyancy aids the main flow and a 

00 2.5 50 

decrease otherwise. It is this behavior which sub- FIG. 3. Temperature contours: (a) T = 0.2, (b) T = 2, and 

stantiates the fact that free convection flow greatly (c) z = IO (Re = 80, Gr = IO’, Pr = 0.7, Q, = 5 x 10-1, 

affects the flow structure especially in the wake. Fig- 
Q, = 1.333). 

ures 4(a) and (d) demonstrate similar effects on the 
temperature field. 

The net effect on the transient drag is plotted in exists an equation, applicable only when @, = 1, to 
Figs. 5(a)-(c) for Pr = 0.7 and Q, = I with different approximate the conjugate heat transfer rates from 
sets of values of (Gr, Re and 0,). The value of @‘, so the information of the internal and external problems. 
selected is based on two considerations: first, there Second, there also exists an application, such as in 
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thermal plasmas processing where a water droplet is current. Due to this alteration of the flow field, the 

injected into a helium gas stream, for which a’, is of total drag is lower than the corresponding forced flow. 

the order of unity. Qualitatively, diffusion controls When they are in the opposite direction, the main flow 

the momentum transport at small times; thus, the is decelerated and the wake is therefore reduced in size 

total drag is practically unaffected regardless of how causing the drag force to increase. To quantify the 

strong the buoyancy force is. Nonetheless, it appears increase/decrease in drag force. the asymptotic drag 

that if the buoyancy-induced motion is strong enough was normalized by the value obtained in pure forced 

and is in the same direction as the free stream. it could convection and the results are tabulated in Table I. A 

drive the low pressure zone away from the trailing quick glance at the table indicates that motion induced 

surface, thereby delaying the formation of the eddy bp density variations only produces minor effects 
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unless the ratio Gr/Re’ is greater than 10, which cor- 
responds to a change of nearly 7% in the drag 
coefficient. The present finding is consistent with the 
conclusion drawn by Wong et af. 1121. 

To see how the overall heat transfer rate is influ- 
enced, Figs. 6(a)-(c) are presented for different values 
of (Gr( ranging from 0 to 10’. As one may anticipate, 
the mean Nusselt numbers are indistinguishable in 
Ihe limit as z -+ 0 which is explained by the fact that 

conduction is the primary transfer mechanism in the 
early stage of the heat transfer process. During this 
period, the Nusselt number varies linearly with time; 
however, if sufficient time is allowed, convection 
becomes more intensified and as a result, the slope of 
the transient Nusselt number curve changes. 
Accompanying these figures is Table 2 where the 
values are normalized with the corresponding value 
in pure forced convection. Like the drag coefficient, 
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Gr/Re” has to be at least of the order of 10 before 

natural convection can either promote or degrade the 
heat transfer rate. 

In an effort to provide confidence to the results 
reported above, Tables 3 and 4 are prepared for Nus- 
selt number and drag coefficient comparisons. 
Because of the lack of data for conjugate problems 
on mixed convection, we shall restrict ourselves to 
limiting cases where data arc either available or can 

be estimated. For the Nusselt numbers, our results are 
slightly higher than those of Oliver and Chung [ 171, 

but the differences are within one percent. Also tabu- 
lated arc those computed from the following 
equation : 

which has been proposed for estimating the conjugate 
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Table I, Late-time drag coefficient ratio (t = 15) 
_~~ 

(Re, Q,,) 

Gr (IO, 0.333) (50, I) (100, 3) 
~- 

-10’ - I .057 1.062 
- IO4 1.031 1.010 1.007 
-IO1 1.004 1.001 1.001 

0 1 .o I.0 1.0 
lo’ 0.995 0.999 0.999 
IO4 0.935 0.989 0.993 
IO‘ 0.833 0.934 

Table 2. Late-time Nusselt number ratio (7 = 15) 
___ - 

(Re, Q,,) 

Gr (IO, 0.333) (50. 1) (100, 3) 
__~ 

-IO5 - 1.080 1.015 
- lo4 1.053 1.005 1.001 
-10’ 1.007 1.0 1.0 

0 1.0 1.0 1.0 
IO’ 0.992 0.999 1.0 
IO4 0.889 0.994 0.998 
IO’ 0.895 0.986 

- ~~ _~ ~_ 

Table 3. Asymptotic Nusselt number comparison (Re = 20, 
Pe = 300, Gr = 0, QD, = I) 

@, Present Ref. [17] Equation (40) 

0.333 1.99 I .84 1.78 
1.0 4.19 4.08 3.89 
3.0 6.83 6.72 6.41 

Table 4. Asymptotic drag coefficient comparison (Gr = 0) 11. 

Ref. Re= 10 Re=50 Re = 100 
-___. _____ ~_ 

Presenl 2.161 0.802 0.546 
Clift et ~11. [I] 2.076 0.769 0.546 

12. 

13. 

Nusselt number from those corresponding to internal 
and external problems. For the drag coefficients, the 
present predictions are compared against the cor- 
relation of Schiller and Nauman as compiled by Clift 
et al. [I]. Again, exceptional agreement was obtained. 
According to Clift and his associates, the Schiller and 
Nauman correlation is reliable within a - 54% error 

range. 
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